Natural Fibres: Structure, Properties and Applications
This chapter deals with the structure, properties and applications of natural fibres. Extraction methods of Natural Fibres from different sources have been discussed in detail. Natural fibres have the special advantage of high specific strength and sustainability, which make them ideal candidates for reinforcement in various polymeric matrices. Natural fibres find application in various fields like construction, automobile industry and also in soil conservation. It is the main source of cellulose, an eminent representative of nanomaterial. Extractions of cellulose from plant-based fibres are discussed in detail. Various methods used for characterization of cellulose nanofibres and advantages of these nanofibres have also been dealt with.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 319.93 Price includes VAT (France)
Softcover Book EUR 400.89 Price includes VAT (France)
Hardcover Book EUR 400.89 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Mechanical and Thermal Properties of Less Common Natural Fibres and Their Composites
Chapter © 2018
Electrospun Cellulose Composite Nanofibers
Chapter © 2015
Natural Fibres—A Potential Bio-reinforcement in Polymers for Fibre Reinforced Plastic (FRP) Structures—An Overview
Chapter © 2023
References
- Bismarck A, Mishra S, Lampke T et al (2005) Plant fibres as reinforcement for green composites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibres biopolymers and biocomposites. CRC, Boca Raton, p 37 Google Scholar
- Bogoeva-Gaceva G, Avella M, Malinconico M, Buzarovska A, Grozdano A, Gentile G, Errico ME et al (2007) Natural fibre eco-composites. Polym Compos 28:98–107 ArticleCASGoogle Scholar
- Anandjiwala RD (2006) The role of research and development in the global competitiveness of natural fibre products. Proceedings, Natural fibres vision 2020, New Delhi 8–9th December Google Scholar
- Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibres and their characterization. Ind Crops Prod 23:1–8 ArticleCASGoogle Scholar
- Morton WE, Hearle JWS (1993) Physical properties of textile fibres. The Textile Institute, Manchester, UK Google Scholar
- Weisman S, Haritos VS, Church JS et al (2010) Honeybee silk: recombinant protein production, assembly and fiber spinning. Biomaterials 1–6 DOI:10.1016/j.biomaterials.2009.12.021 Google Scholar
- Kelsall RW, Hamley IW, Geoghegan M (2005) Handbook of textile fibres II. Man-made fibres. Wiley, UK Google Scholar
- Matthew’s MH (1954) Textile fibres: their physical, microscopic, and chemical properties. John Wiley and Sons Inc., New York Google Scholar
- Press J (1959) Man-made textile encyclopedia. Textbook Publishers Inc., London Google Scholar
- Shi J, Lua S, Du N, Liu X, Song J et al (2008) Identification, recombinant production and structural characterization of four silk proteins from the Asiatic honeybee Apis cerana. Biomaterials 29:2820–2828 ArticleCASGoogle Scholar
- Sutherland TD, Weisman S, Trueman HE, Sriskantha A, Trueman JWH, Haritos VS et al (2007) Conservation of essential design features in coiled coil silks. Mol Biol Evol 24:2424–2432 ArticleCASGoogle Scholar
- Poole AJ, Church JS, Huson MG et al (2009) Environmentally sustainable fibers from regenerated protein. Biomacromolecules 10:1–7 ArticleCASGoogle Scholar
- Bledski AK, Gassan J (1999) Composites reinforced with cellulose-based fibres. Prog Polym Sci 24:221–274 ArticleGoogle Scholar
- Franco PHJ, Valadez-Gonzalez M (2005) Fibre-matrix adhesion in natural fibre composites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibres, biopolymers and biocomposites. CRC, Boca Raton, p 37 Google Scholar
- Nevell TP, Zeronian SH (1985) Cellulose chemistry and its applications. Wiley, New York Google Scholar
- Toumis GT (1991) Structure, properties and utilization. Science and technology of wood. Van Nostrand Reinhold, New York, p 494 Google Scholar
- Zimmermann T, Pohlerand E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6, No. 9 Google Scholar
- Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM et al (2001) Effect of fibre treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61:1437–1447 ArticleCASGoogle Scholar
- Murali MRK, Mohana RK (2007) Extraction and tensile properties of natural fibres: Vakka, date and bamboo. Compos Struct 77:288–295 ArticleGoogle Scholar
- Foulk JA, Akin DE, Dodd RB et al (2001) Processing techniques for improving enzyme-retting of flax. Ind Crops Prod 13:239 ArticleCASGoogle Scholar
- Yu H, Yu C (2007) Study on microbe retting of kenaf fibre. Enzyme Microb Technol 40:1806–1809 ArticleCASGoogle Scholar
- Goodman AM, Ennos AR, Booth I et al (2002) A mechanical study of retting in glyphosate treated flax stems. Ind Crops Prod 15:169 ArticleGoogle Scholar
- Heinemann O (1997) Standroste vonFlachs-Innovation in derFlachserntetechink in VDI/MEG Kolloquium Agrartechink:Erzeugung, Aufbereitung und Verarbeitung von Naturfasern fur nichttextile Zwecke. 22 Bonn:101 Google Scholar
- Terentie P, Neacsu H (1995) Die Gewinnung von Textilfasern aus Hanfstengeln, Proceedings Biorhstoff Hanf-Resource Hemp, Reader zum Technologisch-wis senschaftlichen Symposium. Nova-Institut (Hrsg.), Frankfurt, March 2–5:278 Google Scholar
- Katalyse-Institut furangewandte Umweltforschung (Hrsg.) Hanf & Co. (1995) Die Renaissance der heimischen Faserpflanzen, Verlag Die Werkstatt, Gottingen Google Scholar
- Folster Th, Michaeli W (1993) Flachs-eine nachwachsende Verstarkungsfaser fur Kunststoffe? Kunststoffe 83:687 Google Scholar
- Kessler RW, Kohler BU, Rgoth B et al (1998) Steam explosion of flax- a superior technique for upgrading fibre value. Biomass Bioenergy 14:237–249 ArticleCASGoogle Scholar
- Kohler R, Kessler RW (1999) Designing Natural fibres for advanced materials. Proceedings of the 5th International Conference on wood fibre plastic composites, Madison, may 26–28: 29–36 Google Scholar
- Wurster J, Daul D (1988) Flachs, eine durch Forschung moderene alte Kulturpflanze. Melliland Textilber 12:551 Google Scholar
- Rowell RM, Han JS, Rowell JS et al (2000) Characterization and factors effecting fibre properties in natural polymers and agro fibres based composites. In: Frollini E, Leao AL, Mattoso LH (eds) Natural polymers and biobased composites, USP, Unesp, Embrapa, Brazil p 115–135 Google Scholar
- Gassan J, Bledzki AK (1995) Internationales Techtexil Symposium, Frankfurt, 20–22 June Google Scholar
- Kritschewsky GE (1985) Chemische technology von textil materialien. Moskau, Legprombitisdat Google Scholar
- Sadov F, Korchagin M, Matetsky A et al (1978) Chemical technology of fibrous materials. Mir Publishers, Moscow Google Scholar
- Oke IW (2010) Nanoscience in nature: Cellulose nanocrystals. Studies by undergraduate researchers at Guelph, Winter 3:77–80 Google Scholar
- Whistler RL, Richards EL (1970) Carbohydrates, vol 2A. Academic, New York Google Scholar
- Gassan J, Chate A, Bledzki AK et al (2001) J Mater Sci 36:3715 ArticleCASGoogle Scholar
- David N, Hon S, Shiraishi N et al (1991) Wood and cellulose chemistry. Marcel Dekker, New York Google Scholar
- Frey-Wyssling A (1954) The fine structure of cell micro-fibrils. Science 119:80 ArticleCASGoogle Scholar
- Krassig HA (1992) Cellulose. Gordon and Breach Science Publishers, New York Google Scholar
- Dufresne A (1998) In recent research developments in macromolecules. Pandalai SG (eds) Research Signpost 3:455–474 Google Scholar
- Pietak A, Korte S, Tan E, Downard A, Staiger MP et al (2007) Atomic force microscopy characterization of the surface wettability of natural fibres. Appl Surf Sci 253:3627–3635 ArticleCASGoogle Scholar
- Tomczak F, Deme´trio Sydenstricker TH, Satyanarayana KG et al (2007) Studies on lignocellulosic fibres of Brazil Part II: morphology and properties of Brazilian coconut fibres. Compos Part A 38:1710–1721 ArticleCASGoogle Scholar
- Bessadok A, Marais S, Roudesli S, Lixon C, Me´tayer M et al (2008) Influence of chemical modifications on water-sorption and mechanical properties of agave fibres. Compos Part A 39:29–45 ArticleCASGoogle Scholar
- Sandeep SN, Wanga S, Hurley DC et al (2010) Nanoscale characterization of natural fibres and their composites using contact-resonance force microscopy. Compos: Part A 41:624–631 Google Scholar
- Sgriccia N, Hawley MC, Misra M et al (2008) Characterization of natural fibre surfaces and natural fibre composites. Compos Part A 39:1632–1637 ArticleCASGoogle Scholar
- Maria DRI, Kenny JM, Puglia D, Santulli C, Sarasini F et al (2010) Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos Sci Technol 70:116–122 ArticleCASGoogle Scholar
- Spinacé MAS, Lambert CS, Fermoselli KKG, De Paoli MA et al (2009) Characterization of lignocellulosic curaua fibres. Carbohydr Polym 77:47–53 ArticleCASGoogle Scholar
- Guimarãesa JL, Frollini E, da Silva CG, Wypychc F, Satyanarayanac KG et al (2009) Characterization of banana, sugarcane bagasse and sponge gourd fibres of Brazil. Ind Crop Prod 30:407–415 ArticleCASGoogle Scholar
- Zou L, Jin H, Lu WY, Li X et al (2009) Nanoscale structural and mechanical characterization of the cell wall of bamboo fibres. Mater Sci Eng 29:1375–1379 ArticleCASGoogle Scholar
- Koljonen K, Österberg M, Johansson LS, Stenius P et al (2003) Surface chemistry and morphology of different mechanical pulps determined by ESCA and AFM. Colloids Surf A: Physicochem Eng Asp 228:143–148 ArticleCASGoogle Scholar
- Mohanty AK, Misra M, Drzal LT, Selke SE, Harte BR, Hinrchsen G et al (2005) Natural fibres, biopolymers, and bio composites an introduction. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibres, biopolymers and biocomposites. CRC, Boca Raton, p 37 ChapterGoogle Scholar
- Bax B, Mussig J (2008) Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol 68:1601–1607 ArticleCASGoogle Scholar
- Beckermann GW, Pickering KL (2008) Engineering and evaluation of hemp fibre reinforced polypropylene composites: fibre treatment and matrix modification. Compos Part A 39:979–988 ArticleCASGoogle Scholar
- Bledzki AK, Mamun AA, Jaszkiewicz A, Erdmann K et al (2010) Polypropylene composites with enzyme modified abaca fibre. Compos Sci Technol 70:854–860 ArticleCASGoogle Scholar
- Sangthong S, Pongprayoon T, Yanumet N et al (2009) Mechanical property improvement of unsaturated polyester composite reinforced with admicellar-treated sisal fibres. Compos Part A 40:687–694 ArticleCASGoogle Scholar
- Towo AN, Ansell MP (2008) Fatigue of sisal fibre reinforced composites: constant-life diagrams and hysteresis loop capture. Compos Sci Technol 68:915–1924 ArticleCASGoogle Scholar
- Wang ZF, Peng Z, Li SD, Lin H, Zhang KX, She XD, Fu X et al (2009) The impact of esterification on the properties of starch/natural rubber composite. Compos Sci Technol 69:1797–1803 ArticleCASGoogle Scholar
- Yao F, Wu Q, Lei Y, Xu Y et al (2008) Rice straw fibre-reinforced high-density polyethylene composite: effect of fibre type and loading. Ind Crops Prod 28:63–72 ArticleCASGoogle Scholar
- Huang X, Netraval AN (2009) Biodegradable green composites made using bamboo micro/nano-fibrils and chemically modified soy protein resin. Compos Sci Technol 69:1009–1025 ArticleCASGoogle Scholar
- Lee BH, Kim HS, Lee S, Kim HJ, Dorgan JR et al (2009) Bio-composites of kenaf fibres in polylactide: role of improved interfacial adhesion in the carding process. Compos Sci Technol 69:2573–2579 ArticleCASGoogle Scholar
- Shih YF, Huang CC, Chen PW et al (2009) Biodegradable green composites reinforced by the fibre recycling from disposable chopsticks. Mater Sci Eng 527:1516–1521 Google Scholar
- Suryanegara L, Nakagaito AN, Yano H et al (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192 ArticleCASGoogle Scholar
- Wu CS (2009) Renewable resource-based composites of recycled natural fibres and maleated polylactide bioplastic: Characterization and biodegradability. Polym Degrad Stab 94:1076–1084 ArticleCASGoogle Scholar
- Ma X, Chang PR, Yu J, Stumborg M et al (2009) Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites. Carbohydr Polym 75:1–8 ArticleCASGoogle Scholar
- Netravali AN, Chabba S (2003) Composites get greener. Mater Today 6:22–29 ArticleGoogle Scholar
- Zhu H, Shen J, Feng X, Zhang H, Guo Y, Chen J et al (2010) Fabrication and characterization of bioactive silk fibroin/wollastonite composite scaffolds. Mater Sci Eng 30:132–140 ArticleCASGoogle Scholar
- Netravali AN, Huang X, Mizuta K et al (2007) Advanced green composites. Adv Compos Mater 16:16269–16282 ArticleGoogle Scholar
- Huang X, Netravali AN (2006) Characterization of Nano-clay reinforced phytagel modified soy protein concentrate. Biomacromolecules 7:2783–2789 ArticleCASGoogle Scholar
- Hill S (1997) Cars that grow on trees. New Scientist Feb 3–39 Google Scholar
- Suddell BC, Evans WJ (2005) Natural fibre composites in automotive applications. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibres, biopolymers and biocomposites. CRC, Boca Raton, p 37 Google Scholar
- Mohanty AK, Khan MA, Hinrichsen G et al (2000) Surface modification of jute and its influence on performance of biodegradable jute-fabric/Biopol composites. Compos Sci Technol 60:1115–1124 ArticleCASGoogle Scholar
- Lea˜o AL, Rowell R, Tavares N et al (1998) Applications of natural fibres in automotive industry in Brazil – thermoforming process. In: Prasad PN (ed) Science and technology of polymers and advanced materials. Plenum, New York Google Scholar
- Alves C, Ferra˜o PMC, Silva AJ, Reis LG, Freita LB, Rodrigues M, Alves DE et al (2010) Ecodesign of automotive components making use of natural jute fibre composites. J Clean Prod 18:313–327 ArticleCASGoogle Scholar
- Singh B, Gupta M (2005) Natural fibre composites for building applications. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibres, biopolymers and biocomposites. CRC, Boca Raton, p 37 Google Scholar
- Singh B, Gupta M (2003) Proceedings of the advances in polymeric building materials. Poly Built -2003, Roorke, March 6–7: 5 Google Scholar
- Aziz MA, Paramasivam P, Lee SL et al (1981) Prospects for natural fibre reinforced concretes in construction. Int J Cement Compos Lightweight Concrete 3:123–132 ArticleGoogle Scholar
- Juárez C, Durán A, Valdez P, Fajardo G et al (2007) Performance of “Agave lecheguilla” natural fibre in Portland cement composites exposed to severe environment conditions. Build Environ 42:1151–1157 ArticleGoogle Scholar
- Savastano H Jr, Santos SF, Radonjic M, Soboyejo WO et al (2009) Fracture and fatigue of natural fibre-reinforced cementitious composites. Cement Concr Compos 31:232–243 ArticleCASGoogle Scholar
- Rahman WA, Tin SL, Razak RA et al (2008) Injection moulding simulation analysis of natural fibre composite window frame. J Mater Process Technol 197:22–30 ArticleCASGoogle Scholar
- Toledo FRD, Andrade SF, Fairbairn EMR, Melo FA et al (2009) Durability of compression molded sisal fibre reinforced mortar laminates. Construct Build Mater 23:2409–2420 ArticleGoogle Scholar
- Pillai MS (2006) Applications of natural coir fibre, proceedings, natural fibres vision 2020, New Delhi 8–9th December Google Scholar
- Mwasha A (2009) Using environmentally friendly geotextiles for soil reinforcement: a parametric study. Mater Des 30:1798–1803 ArticleCASGoogle Scholar
- Bhattacharyya R, Fullen DK, Booth CA et al (2009) Utilizing of palm-leaf geotextile mats to conserve loamy sand soil in the United Kingdom. Agric Ecosyst Environ 130:50–58 ArticleGoogle Scholar
- Subaida EA, Chandrakaran S, Sankar N et al (2009) Laboratory performance of unpaved roads reinforced with woven coir geotextiles. Geotextiles Geomembr 27:204–210 ArticleGoogle Scholar
- Datye KR, Gore VN (1994) Application of natural geotextiles and related products. Geotextiles Geomembr 13:371–388 ArticleGoogle Scholar
- Alemdar A, Sain M (2008) Isolation and characterization of nanofibres from agricultural residues-wheat straw and soy hulls. Bioresour Technol 99:1664–1671 ArticleCASGoogle Scholar
- Cherian BM, Pothan LA, Nguyen-Chung T, Mennig G, Kottaisamy M, Thomas S et al (2008) A novel method for the synthesis of cellulose nanofibril whiskers from banana fibres and characterization. J Agric Food Chem 56:5617–5627 ArticleCASGoogle Scholar
- Mora´n JI, Alvarez VA, Cyras VP, Va´zquez A et al (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibres. Cellulose 15:149–159 ArticleCASGoogle Scholar
- Wang B, Sain M, Oksman K et al (2007) Study of structural morphology of hemp fibre from the micro to the nanoscale. Appl Compos Mater 14:89–103 ArticleCASGoogle Scholar
- Zuluaga R, Putaux JL, Restrepo A, Mondragon I, Gan˜a´n P et al (2007) Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14:585–592 ArticleCASGoogle Scholar
- Siro´ I, David P (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose. doi:10.1007/s10570-010-9405-yGoogle Scholar
- Ioelowich M (2008) Cellulose as a nano structured polymer: a short review. Bioresources 3(4):1403–1418 Google Scholar
- Henriksson M, Henriksson G, Berglund LA, Lindstro¨m T et al (2007) An environmentally friendly method for enzyme assisted preparation of microfibrillated cellulose (MFC) nanofibres. Eur Polym J 43:3434–3441 ArticleCASGoogle Scholar
- Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibres for the processing of transparent nanocomposites. Appl Phys A-Mater Sci Process 89:461–466 ArticleCASGoogle Scholar
- Klemm D, Schumann D, Kramer F, Hessler N, Hornung M, Schmauder HP, Marsch S et al (2006) Nanocelluloses as innovative polymers in research and application. Polysaccharides 205:49–96 ArticleCASGoogle Scholar
- Fahmy TYA, Mobarak F (2008) Nanocomposites from natural cellulose fibres filled with kaolin in presence of sucrose. Carbohydr Polym 72:751–755 ArticleCASGoogle Scholar
- Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A et al (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. J Eur Polym 44:2489–2498 ArticleCASGoogle Scholar
- Seydibeyog˘lu MO, Oksman K (2008) Novel nanocomposites based on polyurethane and micro fibrillated cellulose. J Compos Sci Technol 68:908–914 ArticleCASGoogle Scholar
- Wang B, Sain M (2007) Isolation of nanofibres from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521–2527 ArticleCASGoogle Scholar
- Teixeira EM, Correâ AC, Manzoli A, Leite FL, Oliveira CR, Mattoso LHC et al (2010) Cellulose nanofibres from white and naturally colored cotton fibres. Cellulose. doi:10.1007/s10570-010-9403-0Google Scholar
- Grande CJ, Torres FG, Gomez CM, Troncoso OP, Canet-Ferrer J, Martinez-Pastor J et al (2008) Morphological characterization of bacterial cellulose–starch nanocomposites. Polym Compos 16:181–185 CASGoogle Scholar
- Iguchi M, Yamanaka S, Budhiono A et al (2000) Bacterial cellulose – a masterpiece of nature’s arts. J Mater Sci 35:261–270 ArticleCASGoogle Scholar
- Juntaro J, Pommet M, Kalinka G, Mantalaris A, Shaffer MSP, Bismarck A et al (2008) Creating hierarchical structures in renewable composites by attaching bacterial cellulose onto sisal fibres. Adv Mater 20:3122–3126 ArticleCASGoogle Scholar
- Nakagaito AN, Iwamoto S, Yano H et al (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A Mater Sci Process 80:93–97 ArticleCASGoogle Scholar
- De Rodriguez NLG, Thielemans W, Dufresne A et al (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270 ArticleCASGoogle Scholar
- Bhatnagar A, Sain M (2005) Processing of cellulose nanofibres-reinforced composites. J Reinf Plas Compos 24:1259–1268 ArticleCASGoogle Scholar
- Gousse´ C, Chanzy H, Cerrada ML, Fleury E et al (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45:1569–1575 ArticleCASGoogle Scholar
- Habibi Y, Vignon MR (2008) Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose 15:177–185 ArticleCASGoogle Scholar
- Dufresne A, Dupeyre D, Vignon MR et al (2000) Cellulose micro-fibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. J Appl Polym Sci 76:2080–2092 ArticleCASGoogle Scholar
- Bhattacharya D, Germinario LT, Winter WT et al (2008) Isolation, preparation and characterization of cellulose microfibres obtained from bagasse. Carbohydr Polym 73:371–377 ArticleCASGoogle Scholar
- Malainine ME, Mahrouz M, Dufresne A et al (2005) Thermoplastic nanocomposites based on cellulose microfibrils from Opuntia ficus-indica parenchyma cell. Compos Sci Technol 65:1520–1526 ArticleCASGoogle Scholar
- Imai T, Putaux JL, Sugiyama J et al (2003) Geometric phase analysis of lattice images from algal cellulose microfibrils. Polymer 44:1871–1879 ArticleCASGoogle Scholar
- Nakagaito AN, Yano H (2004) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A 80:155–159 ArticleCASGoogle Scholar
- Dinand E, Chanzy H, Vignon MR et al (1999) Suspensions of cellulose micro- fibrils from sugar beet pulp. Food Hydrocolloid 13:275–283 ArticleCASGoogle Scholar
- Wan YZ, Hong L, Jia SR, Huang Y, Zhu Y, Wang YL et al (2006) Synthesis and characterization of hydroxyapatite–bacterial cellulose nanocomposites. Compos Sci Technol 66(11–12):1825–1832 ArticleCASGoogle Scholar
- Svagan AJ, Samir MASA, Berglund LA et al (2008) Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nano- fibrils. Adv Mater 20:1263–1269 ArticleCASGoogle Scholar
- Chakraborty A, Sain M, Kortschot M et al (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107 ArticleCASGoogle Scholar
- Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563 ArticleCASGoogle Scholar
- Cherian BM, Leão AL, Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725 Google Scholar
Author information
Authors and Affiliations
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India S. Thomas
- S. Thomas