Natural Fibres: Structure, Properties and Applications

This chapter deals with the structure, properties and applications of natural fibres. Extraction methods of Natural Fibres from different sources have been discussed in detail. Natural fibres have the special advantage of high specific strength and sustainability, which make them ideal candidates for reinforcement in various polymeric matrices. Natural fibres find application in various fields like construction, automobile industry and also in soil conservation. It is the main source of cellulose, an eminent representative of nanomaterial. Extractions of cellulose from plant-based fibres are discussed in detail. Various methods used for characterization of cellulose nanofibres and advantages of these nanofibres have also been dealt with.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 319.93 Price includes VAT (France)

Softcover Book EUR 400.89 Price includes VAT (France)

Hardcover Book EUR 400.89 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Mechanical and Thermal Properties of Less Common Natural Fibres and Their Composites

Chapter © 2018

Electrospun Cellulose Composite Nanofibers

Chapter © 2015

Natural Fibres—A Potential Bio-reinforcement in Polymers for Fibre Reinforced Plastic (FRP) Structures—An Overview

Chapter © 2023

References

  1. Bismarck A, Mishra S, Lampke T et al (2005) Plant fibres as reinforcement for green composites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibres biopolymers and biocomposites. CRC, Boca Raton, p 37 Google Scholar
  2. Bogoeva-Gaceva G, Avella M, Malinconico M, Buzarovska A, Grozdano A, Gentile G, Errico ME et al (2007) Natural fibre eco-composites. Polym Compos 28:98–107 ArticleCASGoogle Scholar
  3. Anandjiwala RD (2006) The role of research and development in the global competitiveness of natural fibre products. Proceedings, Natural fibres vision 2020, New Delhi 8–9th December Google Scholar
  4. Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibres and their characterization. Ind Crops Prod 23:1–8 ArticleCASGoogle Scholar
  5. Morton WE, Hearle JWS (1993) Physical properties of textile fibres. The Textile Institute, Manchester, UK Google Scholar
  6. Weisman S, Haritos VS, Church JS et al (2010) Honeybee silk: recombinant protein production, assembly and fiber spinning. Biomaterials 1–6 DOI:10.1016/j.biomaterials.2009.12.021 Google Scholar
  7. Kelsall RW, Hamley IW, Geoghegan M (2005) Handbook of textile fibres II. Man-made fibres. Wiley, UK Google Scholar
  8. Matthew’s MH (1954) Textile fibres: their physical, microscopic, and chemical properties. John Wiley and Sons Inc., New York Google Scholar
  9. Press J (1959) Man-made textile encyclopedia. Textbook Publishers Inc., London Google Scholar
  10. Shi J, Lua S, Du N, Liu X, Song J et al (2008) Identification, recombinant production and structural characterization of four silk proteins from the Asiatic honeybee Apis cerana. Biomaterials 29:2820–2828 ArticleCASGoogle Scholar
  11. Sutherland TD, Weisman S, Trueman HE, Sriskantha A, Trueman JWH, Haritos VS et al (2007) Conservation of essential design features in coiled coil silks. Mol Biol Evol 24:2424–2432 ArticleCASGoogle Scholar
  12. Poole AJ, Church JS, Huson MG et al (2009) Environmentally sustainable fibers from regenerated protein. Biomacromolecules 10:1–7 ArticleCASGoogle Scholar
  13. Bledski AK, Gassan J (1999) Composites reinforced with cellulose-based fibres. Prog Polym Sci 24:221–274 ArticleGoogle Scholar
  14. Franco PHJ, Valadez-Gonzalez M (2005) Fibre-matrix adhesion in natural fibre composites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibres, biopolymers and biocomposites. CRC, Boca Raton, p 37 Google Scholar
  15. Nevell TP, Zeronian SH (1985) Cellulose chemistry and its applications. Wiley, New York Google Scholar
  16. Toumis GT (1991) Structure, properties and utilization. Science and technology of wood. Van Nostrand Reinhold, New York, p 494 Google Scholar
  17. Zimmermann T, Pohlerand E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6, No. 9 Google Scholar
  18. Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM et al (2001) Effect of fibre treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61:1437–1447 ArticleCASGoogle Scholar
  19. Murali MRK, Mohana RK (2007) Extraction and tensile properties of natural fibres: Vakka, date and bamboo. Compos Struct 77:288–295 ArticleGoogle Scholar
  20. Foulk JA, Akin DE, Dodd RB et al (2001) Processing techniques for improving enzyme-retting of flax. Ind Crops Prod 13:239 ArticleCASGoogle Scholar
  21. Yu H, Yu C (2007) Study on microbe retting of kenaf fibre. Enzyme Microb Technol 40:1806–1809 ArticleCASGoogle Scholar
  22. Goodman AM, Ennos AR, Booth I et al (2002) A mechanical study of retting in glyphosate treated flax stems. Ind Crops Prod 15:169 ArticleGoogle Scholar
  23. Heinemann O (1997) Standroste vonFlachs-Innovation in derFlachserntetechink in VDI/MEG Kolloquium Agrartechink:Erzeugung, Aufbereitung und Verarbeitung von Naturfasern fur nichttextile Zwecke. 22 Bonn:101 Google Scholar
  24. Terentie P, Neacsu H (1995) Die Gewinnung von Textilfasern aus Hanfstengeln, Proceedings Biorhstoff Hanf-Resource Hemp, Reader zum Technologisch-wis senschaftlichen Symposium. Nova-Institut (Hrsg.), Frankfurt, March 2–5:278 Google Scholar
  25. Katalyse-Institut furangewandte Umweltforschung (Hrsg.) Hanf & Co. (1995) Die Renaissance der heimischen Faserpflanzen, Verlag Die Werkstatt, Gottingen Google Scholar
  26. Folster Th, Michaeli W (1993) Flachs-eine nachwachsende Verstarkungsfaser fur Kunststoffe? Kunststoffe 83:687 Google Scholar
  27. Kessler RW, Kohler BU, Rgoth B et al (1998) Steam explosion of flax- a superior technique for upgrading fibre value. Biomass Bioenergy 14:237–249 ArticleCASGoogle Scholar
  28. Kohler R, Kessler RW (1999) Designing Natural fibres for advanced materials. Proceedings of the 5th International Conference on wood fibre plastic composites, Madison, may 26–28: 29–36 Google Scholar
  29. Wurster J, Daul D (1988) Flachs, eine durch Forschung moderene alte Kulturpflanze. Melliland Textilber 12:551 Google Scholar
  30. Rowell RM, Han JS, Rowell JS et al (2000) Characterization and factors effecting fibre properties in natural polymers and agro fibres based composites. In: Frollini E, Leao AL, Mattoso LH (eds) Natural polymers and biobased composites, USP, Unesp, Embrapa, Brazil p 115–135 Google Scholar
  31. Gassan J, Bledzki AK (1995) Internationales Techtexil Symposium, Frankfurt, 20–22 June Google Scholar
  32. Kritschewsky GE (1985) Chemische technology von textil materialien. Moskau, Legprombitisdat Google Scholar
  33. Sadov F, Korchagin M, Matetsky A et al (1978) Chemical technology of fibrous materials. Mir Publishers, Moscow Google Scholar
  34. Oke IW (2010) Nanoscience in nature: Cellulose nanocrystals. Studies by undergraduate researchers at Guelph, Winter 3:77–80 Google Scholar
  35. Whistler RL, Richards EL (1970) Carbohydrates, vol 2A. Academic, New York Google Scholar
  36. Gassan J, Chate A, Bledzki AK et al (2001) J Mater Sci 36:3715 ArticleCASGoogle Scholar
  37. David N, Hon S, Shiraishi N et al (1991) Wood and cellulose chemistry. Marcel Dekker, New York Google Scholar
  38. Frey-Wyssling A (1954) The fine structure of cell micro-fibrils. Science 119:80 ArticleCASGoogle Scholar
  39. Krassig HA (1992) Cellulose. Gordon and Breach Science Publishers, New York Google Scholar
  40. Dufresne A (1998) In recent research developments in macromolecules. Pandalai SG (eds) Research Signpost 3:455–474 Google Scholar
  41. Pietak A, Korte S, Tan E, Downard A, Staiger MP et al (2007) Atomic force microscopy characterization of the surface wettability of natural fibres. Appl Surf Sci 253:3627–3635 ArticleCASGoogle Scholar
  42. Tomczak F, Deme´trio Sydenstricker TH, Satyanarayana KG et al (2007) Studies on lignocellulosic fibres of Brazil Part II: morphology and properties of Brazilian coconut fibres. Compos Part A 38:1710–1721 ArticleCASGoogle Scholar
  43. Bessadok A, Marais S, Roudesli S, Lixon C, Me´tayer M et al (2008) Influence of chemical modifications on water-sorption and mechanical properties of agave fibres. Compos Part A 39:29–45 ArticleCASGoogle Scholar
  44. Sandeep SN, Wanga S, Hurley DC et al (2010) Nanoscale characterization of natural fibres and their composites using contact-resonance force microscopy. Compos: Part A 41:624–631 Google Scholar
  45. Sgriccia N, Hawley MC, Misra M et al (2008) Characterization of natural fibre surfaces and natural fibre composites. Compos Part A 39:1632–1637 ArticleCASGoogle Scholar
  46. Maria DRI, Kenny JM, Puglia D, Santulli C, Sarasini F et al (2010) Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos Sci Technol 70:116–122 ArticleCASGoogle Scholar
  47. Spinacé MAS, Lambert CS, Fermoselli KKG, De Paoli MA et al (2009) Characterization of lignocellulosic curaua fibres. Carbohydr Polym 77:47–53 ArticleCASGoogle Scholar
  48. Guimarãesa JL, Frollini E, da Silva CG, Wypychc F, Satyanarayanac KG et al (2009) Characterization of banana, sugarcane bagasse and sponge gourd fibres of Brazil. Ind Crop Prod 30:407–415 ArticleCASGoogle Scholar
  49. Zou L, Jin H, Lu WY, Li X et al (2009) Nanoscale structural and mechanical characterization of the cell wall of bamboo fibres. Mater Sci Eng 29:1375–1379 ArticleCASGoogle Scholar
  50. Koljonen K, Österberg M, Johansson LS, Stenius P et al (2003) Surface chemistry and morphology of different mechanical pulps determined by ESCA and AFM. Colloids Surf A: Physicochem Eng Asp 228:143–148 ArticleCASGoogle Scholar
  51. Mohanty AK, Misra M, Drzal LT, Selke SE, Harte BR, Hinrchsen G et al (2005) Natural fibres, biopolymers, and bio composites an introduction. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibres, biopolymers and biocomposites. CRC, Boca Raton, p 37 ChapterGoogle Scholar
  52. Bax B, Mussig J (2008) Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol 68:1601–1607 ArticleCASGoogle Scholar
  53. Beckermann GW, Pickering KL (2008) Engineering and evaluation of hemp fibre reinforced polypropylene composites: fibre treatment and matrix modification. Compos Part A 39:979–988 ArticleCASGoogle Scholar
  54. Bledzki AK, Mamun AA, Jaszkiewicz A, Erdmann K et al (2010) Polypropylene composites with enzyme modified abaca fibre. Compos Sci Technol 70:854–860 ArticleCASGoogle Scholar
  55. Sangthong S, Pongprayoon T, Yanumet N et al (2009) Mechanical property improvement of unsaturated polyester composite reinforced with admicellar-treated sisal fibres. Compos Part A 40:687–694 ArticleCASGoogle Scholar
  56. Towo AN, Ansell MP (2008) Fatigue of sisal fibre reinforced composites: constant-life diagrams and hysteresis loop capture. Compos Sci Technol 68:915–1924 ArticleCASGoogle Scholar
  57. Wang ZF, Peng Z, Li SD, Lin H, Zhang KX, She XD, Fu X et al (2009) The impact of esterification on the properties of starch/natural rubber composite. Compos Sci Technol 69:1797–1803 ArticleCASGoogle Scholar
  58. Yao F, Wu Q, Lei Y, Xu Y et al (2008) Rice straw fibre-reinforced high-density polyethylene composite: effect of fibre type and loading. Ind Crops Prod 28:63–72 ArticleCASGoogle Scholar
  59. Huang X, Netraval AN (2009) Biodegradable green composites made using bamboo micro/nano-fibrils and chemically modified soy protein resin. Compos Sci Technol 69:1009–1025 ArticleCASGoogle Scholar
  60. Lee BH, Kim HS, Lee S, Kim HJ, Dorgan JR et al (2009) Bio-composites of kenaf fibres in polylactide: role of improved interfacial adhesion in the carding process. Compos Sci Technol 69:2573–2579 ArticleCASGoogle Scholar
  61. Shih YF, Huang CC, Chen PW et al (2009) Biodegradable green composites reinforced by the fibre recycling from disposable chopsticks. Mater Sci Eng 527:1516–1521 Google Scholar
  62. Suryanegara L, Nakagaito AN, Yano H et al (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192 ArticleCASGoogle Scholar
  63. Wu CS (2009) Renewable resource-based composites of recycled natural fibres and maleated polylactide bioplastic: Characterization and biodegradability. Polym Degrad Stab 94:1076–1084 ArticleCASGoogle Scholar
  64. Ma X, Chang PR, Yu J, Stumborg M et al (2009) Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites. Carbohydr Polym 75:1–8 ArticleCASGoogle Scholar
  65. Netravali AN, Chabba S (2003) Composites get greener. Mater Today 6:22–29 ArticleGoogle Scholar
  66. Zhu H, Shen J, Feng X, Zhang H, Guo Y, Chen J et al (2010) Fabrication and characterization of bioactive silk fibroin/wollastonite composite scaffolds. Mater Sci Eng 30:132–140 ArticleCASGoogle Scholar
  67. Netravali AN, Huang X, Mizuta K et al (2007) Advanced green composites. Adv Compos Mater 16:16269–16282 ArticleGoogle Scholar
  68. Huang X, Netravali AN (2006) Characterization of Nano-clay reinforced phytagel modified soy protein concentrate. Biomacromolecules 7:2783–2789 ArticleCASGoogle Scholar
  69. Hill S (1997) Cars that grow on trees. New Scientist Feb 3–39 Google Scholar
  70. Suddell BC, Evans WJ (2005) Natural fibre composites in automotive applications. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibres, biopolymers and biocomposites. CRC, Boca Raton, p 37 Google Scholar
  71. Mohanty AK, Khan MA, Hinrichsen G et al (2000) Surface modification of jute and its influence on performance of biodegradable jute-fabric/Biopol composites. Compos Sci Technol 60:1115–1124 ArticleCASGoogle Scholar
  72. Lea˜o AL, Rowell R, Tavares N et al (1998) Applications of natural fibres in automotive industry in Brazil – thermoforming process. In: Prasad PN (ed) Science and technology of polymers and advanced materials. Plenum, New York Google Scholar
  73. Alves C, Ferra˜o PMC, Silva AJ, Reis LG, Freita LB, Rodrigues M, Alves DE et al (2010) Ecodesign of automotive components making use of natural jute fibre composites. J Clean Prod 18:313–327 ArticleCASGoogle Scholar
  74. Singh B, Gupta M (2005) Natural fibre composites for building applications. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibres, biopolymers and biocomposites. CRC, Boca Raton, p 37 Google Scholar
  75. Singh B, Gupta M (2003) Proceedings of the advances in polymeric building materials. Poly Built -2003, Roorke, March 6–7: 5 Google Scholar
  76. Aziz MA, Paramasivam P, Lee SL et al (1981) Prospects for natural fibre reinforced concretes in construction. Int J Cement Compos Lightweight Concrete 3:123–132 ArticleGoogle Scholar
  77. Juárez C, Durán A, Valdez P, Fajardo G et al (2007) Performance of “Agave lecheguilla” natural fibre in Portland cement composites exposed to severe environment conditions. Build Environ 42:1151–1157 ArticleGoogle Scholar
  78. Savastano H Jr, Santos SF, Radonjic M, Soboyejo WO et al (2009) Fracture and fatigue of natural fibre-reinforced cementitious composites. Cement Concr Compos 31:232–243 ArticleCASGoogle Scholar
  79. Rahman WA, Tin SL, Razak RA et al (2008) Injection moulding simulation analysis of natural fibre composite window frame. J Mater Process Technol 197:22–30 ArticleCASGoogle Scholar
  80. Toledo FRD, Andrade SF, Fairbairn EMR, Melo FA et al (2009) Durability of compression molded sisal fibre reinforced mortar laminates. Construct Build Mater 23:2409–2420 ArticleGoogle Scholar
  81. Pillai MS (2006) Applications of natural coir fibre, proceedings, natural fibres vision 2020, New Delhi 8–9th December Google Scholar
  82. Mwasha A (2009) Using environmentally friendly geotextiles for soil reinforcement: a parametric study. Mater Des 30:1798–1803 ArticleCASGoogle Scholar
  83. Bhattacharyya R, Fullen DK, Booth CA et al (2009) Utilizing of palm-leaf geotextile mats to conserve loamy sand soil in the United Kingdom. Agric Ecosyst Environ 130:50–58 ArticleGoogle Scholar
  84. Subaida EA, Chandrakaran S, Sankar N et al (2009) Laboratory performance of unpaved roads reinforced with woven coir geotextiles. Geotextiles Geomembr 27:204–210 ArticleGoogle Scholar
  85. Datye KR, Gore VN (1994) Application of natural geotextiles and related products. Geotextiles Geomembr 13:371–388 ArticleGoogle Scholar
  86. Alemdar A, Sain M (2008) Isolation and characterization of nanofibres from agricultural residues-wheat straw and soy hulls. Bioresour Technol 99:1664–1671 ArticleCASGoogle Scholar
  87. Cherian BM, Pothan LA, Nguyen-Chung T, Mennig G, Kottaisamy M, Thomas S et al (2008) A novel method for the synthesis of cellulose nanofibril whiskers from banana fibres and characterization. J Agric Food Chem 56:5617–5627 ArticleCASGoogle Scholar
  88. Mora´n JI, Alvarez VA, Cyras VP, Va´zquez A et al (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibres. Cellulose 15:149–159 ArticleCASGoogle Scholar
  89. Wang B, Sain M, Oksman K et al (2007) Study of structural morphology of hemp fibre from the micro to the nanoscale. Appl Compos Mater 14:89–103 ArticleCASGoogle Scholar
  90. Zuluaga R, Putaux JL, Restrepo A, Mondragon I, Gan˜a´n P et al (2007) Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14:585–592 ArticleCASGoogle Scholar
  91. Siro´ I, David P (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose. doi:10.1007/s10570-010-9405-yGoogle Scholar
  92. Ioelowich M (2008) Cellulose as a nano structured polymer: a short review. Bioresources 3(4):1403–1418 Google Scholar
  93. Henriksson M, Henriksson G, Berglund LA, Lindstro¨m T et al (2007) An environmentally friendly method for enzyme assisted preparation of microfibrillated cellulose (MFC) nanofibres. Eur Polym J 43:3434–3441 ArticleCASGoogle Scholar
  94. Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibres for the processing of transparent nanocomposites. Appl Phys A-Mater Sci Process 89:461–466 ArticleCASGoogle Scholar
  95. Klemm D, Schumann D, Kramer F, Hessler N, Hornung M, Schmauder HP, Marsch S et al (2006) Nanocelluloses as innovative polymers in research and application. Polysaccharides 205:49–96 ArticleCASGoogle Scholar
  96. Fahmy TYA, Mobarak F (2008) Nanocomposites from natural cellulose fibres filled with kaolin in presence of sucrose. Carbohydr Polym 72:751–755 ArticleCASGoogle Scholar
  97. Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A et al (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. J Eur Polym 44:2489–2498 ArticleCASGoogle Scholar
  98. Seydibeyog˘lu MO, Oksman K (2008) Novel nanocomposites based on polyurethane and micro fibrillated cellulose. J Compos Sci Technol 68:908–914 ArticleCASGoogle Scholar
  99. Wang B, Sain M (2007) Isolation of nanofibres from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521–2527 ArticleCASGoogle Scholar
  100. Teixeira EM, Correâ AC, Manzoli A, Leite FL, Oliveira CR, Mattoso LHC et al (2010) Cellulose nanofibres from white and naturally colored cotton fibres. Cellulose. doi:10.1007/s10570-010-9403-0Google Scholar
  101. Grande CJ, Torres FG, Gomez CM, Troncoso OP, Canet-Ferrer J, Martinez-Pastor J et al (2008) Morphological characterization of bacterial cellulose–starch nanocomposites. Polym Compos 16:181–185 CASGoogle Scholar
  102. Iguchi M, Yamanaka S, Budhiono A et al (2000) Bacterial cellulose – a masterpiece of nature’s arts. J Mater Sci 35:261–270 ArticleCASGoogle Scholar
  103. Juntaro J, Pommet M, Kalinka G, Mantalaris A, Shaffer MSP, Bismarck A et al (2008) Creating hierarchical structures in renewable composites by attaching bacterial cellulose onto sisal fibres. Adv Mater 20:3122–3126 ArticleCASGoogle Scholar
  104. Nakagaito AN, Iwamoto S, Yano H et al (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A Mater Sci Process 80:93–97 ArticleCASGoogle Scholar
  105. De Rodriguez NLG, Thielemans W, Dufresne A et al (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270 ArticleCASGoogle Scholar
  106. Bhatnagar A, Sain M (2005) Processing of cellulose nanofibres-reinforced composites. J Reinf Plas Compos 24:1259–1268 ArticleCASGoogle Scholar
  107. Gousse´ C, Chanzy H, Cerrada ML, Fleury E et al (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45:1569–1575 ArticleCASGoogle Scholar
  108. Habibi Y, Vignon MR (2008) Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose 15:177–185 ArticleCASGoogle Scholar
  109. Dufresne A, Dupeyre D, Vignon MR et al (2000) Cellulose micro-fibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. J Appl Polym Sci 76:2080–2092 ArticleCASGoogle Scholar
  110. Bhattacharya D, Germinario LT, Winter WT et al (2008) Isolation, preparation and characterization of cellulose microfibres obtained from bagasse. Carbohydr Polym 73:371–377 ArticleCASGoogle Scholar
  111. Malainine ME, Mahrouz M, Dufresne A et al (2005) Thermoplastic nanocomposites based on cellulose microfibrils from Opuntia ficus-indica parenchyma cell. Compos Sci Technol 65:1520–1526 ArticleCASGoogle Scholar
  112. Imai T, Putaux JL, Sugiyama J et al (2003) Geometric phase analysis of lattice images from algal cellulose microfibrils. Polymer 44:1871–1879 ArticleCASGoogle Scholar
  113. Nakagaito AN, Yano H (2004) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A 80:155–159 ArticleCASGoogle Scholar
  114. Dinand E, Chanzy H, Vignon MR et al (1999) Suspensions of cellulose micro- fibrils from sugar beet pulp. Food Hydrocolloid 13:275–283 ArticleCASGoogle Scholar
  115. Wan YZ, Hong L, Jia SR, Huang Y, Zhu Y, Wang YL et al (2006) Synthesis and characterization of hydroxyapatite–bacterial cellulose nanocomposites. Compos Sci Technol 66(11–12):1825–1832 ArticleCASGoogle Scholar
  116. Svagan AJ, Samir MASA, Berglund LA et al (2008) Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nano- fibrils. Adv Mater 20:1263–1269 ArticleCASGoogle Scholar
  117. Chakraborty A, Sain M, Kortschot M et al (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107 ArticleCASGoogle Scholar
  118. Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563 ArticleCASGoogle Scholar
  119. Cherian BM, Leão AL, Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725 Google Scholar

Author information

Authors and Affiliations

  1. School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India S. Thomas
  1. S. Thomas